Code: 20CE3501

DESIGN OF REINFORCED CONCRETE STRUCTURES (CIVIL ENGINEERING)

Duration: 3 hours	Max. Marks: 70			
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carrie				
14 marks and have an internal choic	e of Questions.			
2. All parts of Question must be answered in one place.				
BL – Blooms Level	CO – Course Outcome			
Use of IS: 456-2000 and SP – 16 design charts are permitted.				

Max. BL CO Marks **UNIT-I** Draw the idealized stress-strain curves for 1 a) concrete and steel under compression and L2 **CO1** 10 M explain the salient points of the plot. Write the assumptions of the working stress **b**) L2 CO1 $4 \mathrm{M}$ method. OR A singly reinforced beam section is 250 mm 2 wide and 500 mm deep to the center of tensile reinforcement. It is reinforced with 4 bars of 20 mm diameter as tensile steel at an effective L3 **CO1** 14 M cover of 50 mm. Use M 20 concrete and Fe 415 steel to calculate the moment of resistance of the beam section. Use working stress method.

UNIT-II					
3	a)	 i)Identify whether the RC beam is an underreinforced, balanced, or over-reinforced section of size 230 mm X 500 mm deep, reinforced with 5 bars of 20 mm dia with an effective cover of 50mm. Use M20 Grade concrete and Fe415-grade steel. ii) Identify whether the RC beam is an under-reinforced, balanced, or overreinforced section of size 200 mm X 440 mm deep, reinforced with 3 bars of 20 mm dia with an effective cover of 40mm. Use M20-grade concrete and Fe250 Grade of steel. 	L3	CO2	7 M
	b)	 i) Use the compression test results of 150 mm concrete cubes 28, 32, 30, 26, 31, 33, 27, 26, 34, 28, 32, 33 N/mm² to determine the characteristic strength of concrete. ii) Distinguish a doubly reinforced section and a singly reinforced section. 	L3	CO2	7 M
	OR				
4		ive Stress-block parameters for a singly forced section.	L3	CO2	14 M
UNIT-III					
5	and rein mm	imply supported R.C beam is 250 mm wide 500 mm deep to the center of tensile forcement and is reinforced with 4 bars of 20 diameter as tensile steel. If the beam is jected to a factored shear of 95 KN at the	L3	CO3	14 M

	support, design the shear reinforcement consisting of stirrups. Use M 20 concrete and Fe 415 steel.				
	OR				
6	Design of bent-up bars as shear reinforcement, a rectangular beam of section 300mm width by 500mm effective depth is reinforced with four 20mm bars, out of which two bars are bent at the ends of the beam at 45 ⁰ . Determine the additional shear reinforcement required if the factored shear force at the critical section is 320 kN. Consider M25 grade and Fe415 steel.	L3	CO3	14 M	
	UNIT-IV				
7	Design a simply supported RCC slab has to be provided for the roof of a room of clear dimensions 3m x 8.5m. Width of supporting wall is 280mm. The weight of finishes over the slab is 1KN/m ² . Take the live load on the slab 2KN/m ² . Check for shear and deflection. Use concrete grade M20 and steel grade Fe 415.	L3	CO4	14 M	
0	OR Design a DCC slab has to be growided for the				
8	Design a RCC slab has to be provided for the roof of a room of clear dimensions 3m x 4.5m simply supported on all the four sides. The weight of finishes over the slab is 1KN/m ² . Take the live load on the slab 3KN/m ² . Check for shear and deflection. Draw the reinforcement detailing. Use concrete grade M20 and steel grade Fe 415.	L3	CO4	14 M	

UNIT-V						
9	A Reinforced square column 500 mm X 500 mm					
	is subjected to a factored axial load 1800 kN					
	accompanied by a factored moment of 100kNm.					
	Providing reinforcement on two sides, determine	L3	CO5	14 M		
	the reinforcement required for the column. Use					
	M20 Grade of concrete and Fe250 Grade of					
	steel.					
OR						
10	Design a RC footing for a RC column of 400					
	mm X 400 mm size carrying an axial load of					
	1000kN using M20 Grade concrete and Fe415	L3	CO5	14 M		
	Grade of steel. The safe bearing capacity of soil					
	is 200 kN/m ² .					